Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31484749

RESUMO

Phase-separated biomolecular condensates of proteins and nucleic acids form functional membrane-less organelles (e.g., stress granules and P-bodies) in the mammalian cell cytoplasm and nucleus. In contrast to the long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA) associated with the endoplasmic reticulum (ER) and Golgi apparatus, we report that MxA formed membraneless metastable (shape-changing) condensates in the cytoplasm. In our studies, we used the same cell lines and methods as those used by previous investigators but concluded that wild-type MxA formed variably sized spherical or irregular bodies, filaments, and even a reticulum distinct from that of ER/Golgi membranes. Moreover, in Huh7 cells, MxA structures associated with a novel cytoplasmic reticular meshwork of intermediate filaments. In live-cell assays, 1,6-hexanediol treatment led to rapid disassembly of green fluorescent protein (GFP)-MxA structures; FRAP revealed a relative stiffness with a mobile fraction of 0.24 ± 0.02 within condensates, consistent with a higher-order MxA network structure. Remarkably, in intact cells, GFP-MxA condensates reversibly disassembled/reassembled within minutes of sequential decrease/increase, respectively, in tonicity of extracellular medium, even in low-salt buffers adjusted only with sucrose. Condensates formed from IFN-α-induced endogenous MxA also displayed tonicity-driven disassembly/reassembly. In vesicular stomatitis virus (VSV)-infected Huh7 cells, the nucleocapsid (N) protein, which participates in forming phase-separated viral structures, associated with spherical GFP-MxA condensates in cells showing an antiviral effect. These observations prompt comparisons with the extensive literature on interactions between viruses and stress granules/P-bodies. Overall, the new data correct a long-standing misinterpretation in the MxA literature and provide evidence for membraneless MxA biomolecular condensates in the uninfected cell cytoplasm.IMPORTANCE There is a long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA), which displays antiviral activity against several RNA and DNA viruses, associates with the endoplasmic reticulum (ER) and Golgi apparatus. We provide data to correct this misinterpretation and further report that MxA forms membraneless metastable (shape-changing) condensates in the cytoplasm consisting of variably sized spherical or irregular bodies, filaments, and even a reticulum. Remarkably, MxA condensates showed the unique property of rapid (within 1 to 3 min) reversible disassembly and reassembly in intact cells exposed sequentially to hypotonic and isotonic conditions. Moreover, GFP-MxA condensates included the VSV nucleocapsid (N) protein, a protein previously shown to form liquid-like condensates. Since intracellular edema and ionic changes are hallmarks of cytopathic effects of a viral infection, the tonicity-driven regulation of MxA condensates may reflect a mechanism for modulation of MxA function during viral infection.


Assuntos
Citoplasma/virologia , Proteínas de Resistência a Myxovirus/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral/fisiologia , Citoplasma/metabolismo , Humanos , Orthomyxoviridae/metabolismo , Proteínas/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Viroses/metabolismo , Vírus/metabolismo
2.
Contemp Oncol (Pozn) ; 22(2): 86-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150884

RESUMO

AIM OF THE STUDY: Interferon (IFN)-α is now established as a treatment modality in various human cancers. The IFN-α-inducible human "myxovirus resistance protein A" (MxA) is a cytoplasmic dynamin-family large GTPase primarily characterized for its broad-spectrum antiviral activity and, more recently, for its anti-tumor and anti-metastasis effects. We characterized the association of IFN-α-induced MxA with cytoplasmic structures in human Huh7 cancer cells and in primary endothelial cells. MATERIAL AND METHODS: We re-evaluated the long-standing inference that MxA associated with the smooth ER using double-label immunofluorescence techniques and the ER structural protein RTN4 as a marker for smooth ER in IFN-α-treated cells. We also evaluated the relationship of exogenously expressed HA-MxA and GFP-MxA with mitochondria, and characterized cytoplasmic GFP-MxA structures using correlated light and electron microscopy (CLEM). RESULTS AND CONCLUSIONS: We discovered that IFN-α-induced endogenous MxA associated with variably-sized endosome-like and reticular cytoplasmic structures which were distinct from the ER. Thin-section EM studies of GFP-MxA expressing Huh7 cells showed that GFP-MxA formed variably-sized clusters of vesiculotubular elements to form endosome-like "MxA bodies". Many of these clusters stretched out alongside cytoskeletal elements to give the appearance of a cytoplasmic "MxA reticulum". This MxA meshwork was distinct from but adjacent to mitochondria. GFP-MxA expressing Huh7 cells showed reduced MitoTracker uptake and swollen mitochondria by thin-section EM. The new data identify cytoplasmic MxA structures as novel organelles, and suggest cross-talk between MxA structures and mitochondria that might account for the increased anti-tumoral efficacy of IFN-α combined with ligands that activate other pattern-sensing receptor pathways.

3.
Int J Endocrinol ; 2018: 3473105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140283

RESUMO

The "estrogen paradox" in pulmonary arterial hypertension (PAH) refers to observations that while there is a higher incidence of idiopathic PAH in women, rodent models of PAH show male dominance and estrogens are protective. To explain these differences, we previously proposed the neuroendocrine-STAT5-BCL6 hypothesis anchored in the sex-biased and species-specific patterns of growth hormone (GH) secretion by the pituitary, the targeting of the hypothalamus by estrogens to feminize GH secretion patterns, and the role of the transcription factors STAT5a/b and BCL6 as downstream mediators of this patterned GH-driven sex bias. As a test of this hypothesis, we previously reported that vascular smooth muscle cell- (SMC-) specific deletion of the STAT5a/b locus abrogated the male-dominant sex bias in the chronic hypoxia model of PAH in mice. In the present study, we confirmed reduced BCL6 expression in pulmonary arterial (PA) segments in both male and female SMC:STAT5a/b-/- mice. In order to test the proposed contribution of BCL6 to sex bias in PAH, we developed mice with SMC-specific deletion of BCL6+/- by crossing SM22α-Cre mice with BCL6-floxed mice and investigated sex bias in these mutant mice in the chronic hypoxia model of PAH. We observed that the male-bias observed in wild-type- (wt-) SM22α-Cre-positive mice was abrogated in the SMC:BCL6+/- knockouts-both males and females showed equivalent enhancement of indices of PAH. The new data confirm BCL6 as a contributor to the sex-bias phenotype observed in hypoxic PAH in mice and support the neuroendocrine-STAT5-BCL6 hypothesis of sex bias in this experimental model of vascular disease.

4.
Proc Natl Acad Sci U S A ; 115(3): 613-618, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295935

RESUMO

To elucidate molecular mechanisms responsible for the sexually dimorphic phenotype of soluble epoxide hydrolase (sEH) expression, we tested the hypothesis that female-specific down-regulation of sEH expression is driven by estrogen-dependent methylation of the Ephx2 gene. Mesenteric arteries isolated from male, female, ovariectomized female (OV), and OV with estrogen replacement (OVE) mice, as well as the human cell line (HEK293T) were used. Methylation-specific PCR and bisulfite genomic sequencing analysis indicate significant increases in DNA/CG methylation in vessels of female and OVE compared with those of male and OV mice. The same increase in CG methylation was also observed in male vessels incubated with a physiological concentration of 17ß-estradiol (17ß-E2) for 48 hours. All vessels that displayed increases in CG methylation were concomitantly associated with decreases in their Ephx2 mRNA and protein, suggesting a methylation-induced gene silencing. Transient transfection assays indicate that the activity of Ephx2 promoter-coding luciferase was significantly attenuated in HEK293T cells treated with 17ß-E2, which was prevented by additional treatment with an estrogen receptor antagonist (ICI). ChIP analysis indicates significantly reduced binding activities of transcription factors (including SP1, AP-1, and NF-κB with their binding elements located in the Ephx2 promoter) in vessels of female mice and human cells treated with 17ß-E2, responses that were prevented by ICI and Decitabine (DNA methyltransferase inhibitor), respectively. In conclusion, estrogen/estrogen receptor-dependent methylation of the promoter of Ephx2 gene silences sEH expression, which is involved in specific transcription factor-directed regulatory pathways.


Assuntos
Epigênese Genética , Epóxido Hidrolases/genética , Estradiol/metabolismo , Estrogênios/metabolismo , Animais , Metilação de DNA , Epóxido Hidrolases/metabolismo , Feminino , Inativação Gênica , Células HEK293 , Humanos , Masculino , Artérias Mesentéricas/metabolismo , Camundongos , Regiões Promotoras Genéticas , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-28827137

RESUMO

To test the hypothesis that VitC downregulates soluble epoxide hydrolase (sEH, responsible for converting EETs to DHETs) to stabilize tissue EETs, the heart, lung, liver, kidney, and mesenteric arteries isolated from normal rats were incubated with VitC (1000µM) for 72h, and tissue sEH expression, along with EET and DHET profiles were assessed. VitC caused significant reductions in sEH mRNA and protein content in the liver, heart and vessels, but had no effect on renal and pulmonary sEH expression, revealing a tissue-specific regulatory mechanism. The functional consequence of reduced sEH expression was validated by LC/MS/MS-based analysis, indicating that in VitC-treated tissues that displayed downregulation of sEH mRNA and protein expression, total DHETs were significantly lower, accompanied with a greater ratio of EETs/DHETs than those in VitC-untreated groups. Thus, VitC elicits a transcriptional downregulation of sEH in normal liver, heart, and vessels to reduce EET degradation and increase EET bioavailability.


Assuntos
Ácido Ascórbico/farmacologia , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Animais , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade
6.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L350-L359, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28450284

RESUMO

To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor (t-TUCB; 1 mg·kg-1·day-1) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and t-TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H2 (PGH2)/thromboxane A2 (TXA2) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH2 and TXA2 potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Hipóxia/induzido quimicamente , Prostaglandinas/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Pressão Sanguínea/efeitos dos fármacos , Epóxido Hidrolases/farmacologia , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/metabolismo
7.
Mol Med ; 21(1): 688-701, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252185

RESUMO

Pulmonary hypertension (PH) is a disease with high morbidity and mortality. The prevalence of idiopathic pulmonary arterial hypertension (IPAH) and hereditary pulmonary arterial hypertension (HPAH) is approximately two- to four-fold higher in women than in men. Paradoxically, there is an opposite male bias in typical rodent models of PH (chronic hypoxia or monocrotaline); in these models, administration of estrogenic compounds (for example, estradiol-17ß [E2]) is protective. Further complexities are observed in humans ingesting anorexigens (female bias) and in rodent models, such as after hypoxia plus SU5416/Sugen (little sex bias) or involving serotonin transporter overexpression or dexfenfluramine administration (female bias). These complexities in sex bias in PH remain incompletely understood. We recently discovered that conditional deletion of signal transducer and activator of transcription 5a/b (STAT5a/b) in vascular smooth muscle cells abrogated the male bias in PH in hypoxic mice and that late-stage obliterative lesions in patients of both sexes with IPAH and HPAH showed reduced STAT5a/b, reduced Tyr-P-STAT5 and reduced B-cell lymphoma 6 protein (BCL6). In trying to understand the significance of these observations, we realized that there existed a well-characterized E2-sensitive central neuroendocrine mechanism of sex bias, studied over the last 40 years, that, at its peripheral end, culminated in species-specific male ("pulsatile") versus female ("more continuous") temporal patterns of circulating growth hormone (GH) levels leading to male versus female patterned activation of STAT5a/b in peripheral tissues and thus sex-biased expression of hundreds of genes. In this report, we consider the contribution of this neuroendocrine mechanism (hypothalamus-GH-STAT5) in the generation of sex bias in different PH situations.

8.
Mol Med ; 20: 625-38, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25470773

RESUMO

Chronic hypoxia typically elicits pulmonary hypertension (PH) in mice with a male-dominant phenotype. There is an opposite-sex bias in human PH, with a higher prevalence in women, but greater survival (the "estrogen paradox"). We investigated the involvement of the STAT5a/b species, previously established to mediate sexual dimorphism in other contexts, in the sex bias in PH. Mice with heterozygous or homozygous deletions of the STAT5a/b locus in vascular smooth muscle cells (SMCs) were generated in crosses between STAT5a/b(fl/fl) and transgelin (SM22α)-Cre(+/+) parents. Wild-type (wt) males subjected to chronic hypoxia showed significant PH and pulmonary arterial remodeling, with wt females showing minimal changes (a male-dominant phenotype). However, in conditional STAT5(+/-) or STAT5(-/-) mice, hypoxic females showed the severest manifestations of PH (a female-dominant phenotype). Immunofluorescence studies on human lung sections showed that obliterative pulmonary arterial lesions in patients with idiopathic pulmonary arterial hypertension (IPAH) or hereditary pulmonary arterial hypertension (HPAH), both male and female, overall had reduced STAT5a/b, reduced PY-STAT5 and reduced endoplasmic reticulum (ER) GTPase atlastin-3 (ATL3). Studies of SMCs and endothelial cell (EC) lines derived from vessels isolated from lungs of male and female IPAH patients and controls revealed instances of coordinate reductions in STAT5a, STAT5b and ATL3 in IPAH-derived cells, including SMCs and ECs from the same patient. Taken together, these data provide the first definitive evidence for a contribution of STAT5a/b to the sex bias in PH in the hypoxic mouse and implicate reduced STAT5 in the pathogenesis of the human disease.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT5/genética
9.
JAKSTAT ; 4(3): 1-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27141328

RESUMO

Previous studies have elucidated a neuroendocrine mechanism consisting of the hypothalamus (growth hormone releasing hormone, GHRH) - pituitary (growth hormone, GH) - STAT5a/b axis that underlies sex-biased gene expression in the liver. It is now established that male vs female patterned secretion of GHRH, and thus of circulating GH levels ("pulsatile" vs "more continuous" respectively), leading to differently patterned activation of PY-STAT5a/b in hepatocytes results in sex-biased gene expression of cohorts of hundreds of downstream genes. This review outlines new data in support of a STAT5a/b-based mechanism of sex bias in the vascular disease pulmonary hypertension (PH). Puzzling observations in PH include its 2-4-fold higher prevalence in women but a male-dominance in many rodent models, and, paradoxically, inhibition of PH development by estrogens in such models. We observed that conditional deletion of STAT5a/b in vascular smooth muscle cells (SMC) in mice converted the male-dominant model of chronic hypoxia-induced PH into a female-dominant phenotype. In human idiopathic PH, there was reduced STAT5a/b and PY-STAT5 in cells in late-stage obliterative pulmonary arterial lesions in both men and women. A juxtaposition of the prior liver data with the newer PH-related data drew attention to the hypothalamus-GH-STAT5 axis, which is the major target of estrogens at the level of the hypothalamus. This hypothesis explains many of the puzzling aspects of sex bias in PH in humans and rodent models. The extension of STAT5-anchored mechanisms of sex bias to vascular disease emphasizes the contribution of central neuroendocrine processes in generating sexual dimorphism in different tissues and cell types.

10.
PLoS One ; 8(1): e55426, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383189

RESUMO

The transcription factor STAT3 has been previously reported to be associated with mitochondria. However, we have been unable to visualize an association of STAT3-GFP, STAT3-DsRed or STAT3-Flag with mitochondria in human Hep3B hepatocytes thus far even though an association of these molecules with other cytoplasmic organelles (endosomes) was readily demonstrable. We then addressed the broader question of a possible association of other STAT-family of proteins with mitochondria by first using immunolocalization assays in Hep3B and human pulmonary arterial endothelial and smooth muscle cells. Strong anti-STAT6-immunolocalization with mitochondria was apparent in fluorescence and electron microscopy assays of cells first washed with a digitonin-sucrose buffer to remove bulk soluble STAT proteins. In live-cell imaging studies, STAT6-GFP, but not N1-GFP, was observed to constitutively colocalize with MitoTracker- and tetramethylrhodamine ethyl ester (TMRE)-positive mitochondria, and with mitochondrial F1-ATPase when assayed by immunofluorescence after fixation. This association was Tyr-phosphorylation independent in that a STAT6 truncated protein (STAT6(1-459)-GFP) which lacked the SH2 domain (517-632) and the cytokine-activated Y641 phosphorylation site also accumulated in MitoTracker-positive mitochondria. This was consistent with the unexpected discovery that anti-STAT6-immunofluoresence also associated with mitochondria in mouse embryo fibroblasts (MEFs) from both wild-type and the STAT6(SH2-/SH2-) mouse. MEFs from the latter mouse, which had been engineered in 1996 to be deleted in the STAT6 SH2 domain (amino acids 505-584) expressed an immune-specific ∼50 kDa protein detectable in whole cell and mitochondria-enriched fractions. Taken together, the present data provide the first definitive evidence of the association of any STAT-protein family member with mitochondria--that of STAT6.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/ultraestrutura , Animais , Western Blotting , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Miócitos de Músculo Liso/metabolismo , Compostos Organometálicos/metabolismo , ATPases Translocadoras de Prótons/metabolismo
11.
Pulm Circ ; 3(3): 533-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24618539

RESUMO

Abstract The natural history of familial pulmonary arterial hypertension (PAH) typically involves mutations in and/or haploinsuffciency of BMPR2 (gene for bone morphogenetic protein receptor type 2) but with low penetrance (10%-15%), delayed onset (in the third or fourth decade), and a gender bias (two- to fourfold more prevalent in postpubertal women). Thus, investigators have sought an understanding of "second-hit" modalities that might affect BMPR2 anterograde trafficking and/or function. Indeed, vascular lung lesions in PAH have been reported to contain enlarged "vacuolated" endothelial and smooth muscle cells with dilated endoplasmic reticulum (ER) cisternae, increased ER structural protein reticulon 4 (also called Nogo-B), and enlarged and fragmented Golgi apparatus. We recently replicated this cellular phenotype in primary human pulmonary arterial endothelial cells and human pulmonary arterial smooth muscle cells in culture by acute knockdown of the estradiol 17ß (E2)-responsive proteins signal transducer and activator of transcription 5a (STAT5a) and STAT5b using small interfering RNAs (siRNAs). We have now investigated whether functional haploinsufficiences of these molecules, alone or in combination with other modalities, might interfere with anterograde membrane trafficking using (a) the quantitative tsO45VSV-G-GFP trafficking assay and (b) assays for cell-surface localization of Flag-tagged BMPR2 molecules. The G glycoprotein of the vesicular stomatitis virus (VSV-G) trafficking assay was validated in EA.hy926 endothelial cells by showing that cells exposed to monocrotaline pyrrole displayed reduced anterograde trafficking. Thereafter, the combinatorial knockdowns of STAT5a, STAT5b, BMPR2, and/or endothelial nitric oxide synthase as well as exposure to E2 or 2-methoxyestradiol were observed to significantly inhibit VSV-G trafficking. These combinations also led to intracellular trapping of wild-type Flag-tagged BMPR2. Overexpression of the PAH disease-derived F14 and KDF mutants of BMPR2, which were trapped in the ER/Golgi, also inhibited VSV-G trafficking in trans. Moreover, probenecid, a chemical chaperone in clinical use today, partially restored cell-surface localization of the KDF but not the F14 mutant. These data identify several combinatorial modalities that inhibit VSV-G anterograde trafficking and cause mislocalization of BMPR2. These modalities merit consideration in defining aspects of the late-developing and gender-biased natural history of human PAH.

12.
Am J Physiol Cell Physiol ; 304(4): C312-23, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23151802

RESUMO

STAT5a/b species are well known as transcription factors that regulate nuclear gene expression. In a novel line of research in human pulmonary arterial endothelial cells (HPAECs), we previously observed that STAT5a associated with the Golgi apparatus and that siRNA-mediated knockdown of STAT5a/b led to the rapid development of a dramatic cystic change in the endoplasmic reticulum (ER) characterized by deposition along cyst membranes and tubule-to-cyst boundaries of the proteins reticulon-4 (RTN4; also called Nogo-B) and the ER-resident GTPase atlastin-3 (ATL3) and Golgi fragmentation. We now report that STAT5a can be observed in ER sheets in digitonin-permeabilized HPAECs and that anti-STAT5a cross- immunopanned ATL3 but not RTN4. Moreover, there was marked accumulation of the 63-kDa cytoskeleton-linking membrane protein and ER-spacer CLIMP63 (also called cytoskeleton-associated protein 4, CKAP4) and KDEL-mCherry within the cysts. That the STAT5a/b-siRNA-induced cystic ER phenotype developed in the presence of the transcription inhibitor 5,6-dichloro-1-ß-d-ribofuranosylbenzimidazole (DRB) had suggested that the mechanism was independent of the transcription factor functions of STAT5a/b, i.e., was "nongenomic." We have now definitively tested the requirement for the nucleus in eliciting the STAT5a/b-siRNA-induced cystic ER phenotype. Enucleated HPAEC cytoplasts were prepared using adherent 35-mm cultures using the cytochalasin B-centrifugation method (typically yielding 65-75% enucleation). STAT5a/b siRNAs readily elicited the cystic ER phenotype including the marked luminal accumulation of CLIMP63 and Golgi fragmentation in the recovered HPAEC cytoplasts demonstrably lacking a nucleus. These studies provide unequivocal evidence using enucleated cytoplasts for a nongenomic mechanism(s) underlying the cystic change in ER structure elicited by STAT5a/b knockdown.


Assuntos
Retículo Endoplasmático/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Células Cultivadas , Cicloeximida/farmacologia , Diclororribofuranosilbenzimidazol/farmacologia , Retículo Endoplasmático/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Artéria Pulmonar/citologia , Fator de Transcrição STAT5/metabolismo , Análise de Célula Única , Proteínas Supressoras de Tumor/metabolismo
13.
Diabetes ; 61(12): 3181-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933112

RESUMO

We aimed to investigate specific roles of mitogen-activated protein kinases (MAPK) in the deterioration of endothelial function during the progression of diabetes and the potential therapeutic effects of MAPK inhibitors and agonists in the amelioration of endothelial function. Protein expression and phosphorylation of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk) were assessed in mesenteric arteries of 3- (3M) and 9-month-old (9M) male diabetic and control mice. The expression of p38, JNK, and Erk was comparable in all groups of mice, but the phosphorylation of p38 and JNK was increased in 3M and further increased in 9M diabetic mice, whereas the phosphorylation of Erk was substantially reduced in 9M diabetic mice. NADPH oxidase-dependent superoxide production was significantly increased in vessels of two ages of diabetic mice. Inhibition of either p38 with SB203580 or JNK with SP600125 reduced superoxide production and improved shear stress-induced dilation (SSID) in 3M, but not in 9M, diabetic mice. Treating the vessels of 9M diabetic mice with resveratrol increased Erk phosphorylation and shear stress-induced endothelial nitric oxide synthase (eNOS) phosphorylation and activity, but resveratrol alone did not improve SSID. Administration of resveratrol and SB203580 or resveratrol and SP600125 together significantly improved SSID in vessels of 9M diabetic mice. The improved response was prevented by U0126, an Erk inhibitor. Thus, p38/JNK-dependent increase in oxidative stress diminished nitric oxide-mediated dilation in vessels of 3M diabetic mice. Oxidative stress and impaired Erk-dependent activation of eNOS exacerbates endothelial dysfunction in the advanced stage of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Antracenos/uso terapêutico , Butadienos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/uso terapêutico , Immunoblotting , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Nitrilas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Piridinas/uso terapêutico , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R674-81, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22262308

RESUMO

To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 µm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Progressão da Doença , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Estresse Oxidativo/fisiologia , Animais , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Superóxidos/metabolismo , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/metabolismo
15.
Am J Physiol Cell Physiol ; 302(5): C804-20, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159083

RESUMO

We report unexpected nongenomic functions of signal transducer and activator of transcription (STAT) 5 species in the cytoplasm aimed at preserving the structure and function of the Golgi apparatus and rough endoplasmic reticulum (ER) in vascular cells. Immunoimaging and green fluorescent protein-tagged-STAT5a protein localization studies showed the constitutive association of nonphosphorylated STAT5a, and to a lesser extent STAT5b, with the Golgi apparatus and of STAT5a with centrosomes in human pulmonary arterial endothelial and smooth muscle cells. Acute knockdown of STAT5a/b species using small interfering RNAs (siRNAs), including in the presence of an mRNA synthesis inhibitor (5,6-dichloro-1-ß-d-ribofuranosylbenzimidazole), produced a dramatic phenotype within 1 day, consisting of dilatation and fragmentation of Golgi cisternae, a marked tubule-to-cyst change in the ER, increased accumulation of reticulon-4 (RTN4)/Nogo-B and atlastin-3 (ATL3) at cyst-zone boundaries, cystic separation of the outer and inner nuclear membranes, accompanied by scalloped/lunate distortion of the nucleus, with accumulation of RTN4 on convex sides of distorted nuclei. These cells showed inhibition of vesicular stomatitis virus G protein glycoprotein trafficking, mitochondrial fragmentation, and reduced mitochondrial function. STAT5a/b(-/-) mouse embryo fibroblasts also showed altered ER/Golgi dynamics. RTN4 knockdown using siRNA did not affect development of the cystic phenotype; ATL3 siRNA led to effacement of cyst-zone boundaries. In magnetic-bead cross-immunopanning assays, ATL3 bound both STAT5a and STAT5b. Remarkably, this novel cystic ER/lunate nucleus phenotype was characteristic of vascular cells in arterial lesions of idiopathic pulmonary hypertension, an unrelentingly fatal human disease. These data provide evidence of a STAT-family protein regulating the structure of a cytoplasmic organelle and implicate this mechanism in the pathogenesis of a human disease.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Bovinos , Núcleo Celular/metabolismo , Células Cultivadas , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Citoplasma/metabolismo , Diclororribofuranosilbenzimidazol/química , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/metabolismo , Glicoproteínas de Membrana , Camundongos , Microscopia Eletrônica , Proteínas da Mielina/metabolismo , Miócitos de Músculo Liso , Proteínas Nogo , Transporte Proteico , Artéria Pulmonar/citologia , RNA Interferente Pequeno , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Proteínas do Envelope Viral
16.
Am J Physiol Heart Circ Physiol ; 299(5): H1476-83, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833958

RESUMO

Low-salt (LS) diet has been considered to be beneficial in the prevention and treatment of hypertension; however, it also increases plasma angiotensin (ANG) II and may cause adverse cardiovascular effects, such as endothelial dysfunction. We assessed endothelial function of coronary arterioles and vascular superoxide production, as a function of LS diet. Dogs were fed with LS (0.05% NaCl) or a normal-salt (NS, 0.65% NaCl) diet for 2 wk. There were threefold increases in plasma ANG II, associated with a 60% reduction in flow-induced dilation (FID) in coronary arterioles of LS compared with NS dogs. In vessels of NS dogs, FID was primarily mediated by nitric oxide (NO), as indicated by an eliminated FID by N(ω)-nitro-l-arginine methyl ester (l-NAME). In vessels of LS dogs, however, FID was eliminated. Administration of apocynin, a NAD(P)H oxidase inhibitor, partially restored FID and additional l-NAME eliminated FID. Generation of superoxide, measured with dihydroethidium, was significantly greater in vessels of LS than in NS dogs, which was further increased in response to ANG II or phorbol 12,13-dibutyrate, an agonist of protein kinase C (PKC). The enhanced superoxide was normalized by apocynin, losartan (a blocker of angiotensin type 1 receptor), and chelerythrine chloride (an antagonist of PKC). Western blotting indicated an upregulation of gp91(phox) and p47(phox), associated with increased expression of phosphorylated PKC in vessels of LS dogs. In separate experiments, dogs were fed simultaneously with LS and losartan (LS + Losa) for 2 wk. There was a significant increase in plasma ANG II in LS + Losa dogs, which, however, was associated with normal FID and gp91(phox) expression in coronary arterioles. In conclusion, LS led to endothelial dysfunction, as indicated by an impaired flow-induced dilation caused by decreasing NO bioavailibility, a response that involves angiotensin-induced activation of PKC that, in turn, activates vascular NAD(P)H oxidase to produce superoxide.


Assuntos
Angiotensina II/metabolismo , Vasos Coronários/fisiopatologia , NADPH Oxidases/metabolismo , Proteína Quinase C/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Vasodilatação/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Cães , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Losartan/farmacologia , Masculino , Modelos Animais , Óxido Nítrico/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Superóxidos/metabolismo
17.
Am J Physiol Regul Integr Comp Physiol ; 298(4): R862-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130225

RESUMO

We aimed to identify which cytochrome P-450 (CYP) family/subfamily, as well as related transcription factor(s), is responsible for the estrogen-dependent synthesis of epoxyeicosatrienoic acids (EETs) to initiate shear stress-induced vasodilation. Microarray analysis indicated a significant upregulation of CYP2C29 and retinoid X receptor gamma (RXRgamma) in isolated mesenteric arteries/arterioles of female endothelial nitric oxide synthase-knockout mice, a result that was validated by real-time RT-PCR. The cannulated vessels were then perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress dose-dependently stimulated the release of EETs into the perfusate, associated with an EET-mediated vasodilation, in which predominantly 14,15-EET and 11,12-EET contributed to the responses ( approximately 87.4% of total EETs). Transfection of vessels with CYP2C29 siRNA eliminated the release of EETs into the perfusate, which was evidenced by an abolished vasodilation, and confirmed by RT-PCR and Western blot analyses. Knockdown of RXRgamma in these vessels significantly inhibited the production of EETs, parallel to a reduced vasodilation. RXRgamma siRNA not only silenced the vascular RXRgamma expression, but synchronously downregulated CYP2C29 expression, leading to a reduced EET synthesis. In conclusion, our data provide the first evidence for a specific signaling cascade, by which estrogen potentially activates the CYP2C29 gene in the absence of nitric oxide, to synthesize EETs in response to shear stress, via an RXRgamma-related regulatory mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Ácidos Hidroxieicosatetraenoicos/fisiologia , Receptor X Retinoide gama/genética , Animais , Arteríolas/fisiologia , Família 2 do Citocromo P450 , Ácidos Graxos Insaturados/biossíntese , Feminino , Ácidos Hidroxieicosatetraenoicos/biossíntese , Masculino , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase/deficiência , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , RNA/isolamento & purificação , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Vasodilatação
18.
Am J Physiol Heart Circ Physiol ; 297(5): H1829-36, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767531

RESUMO

Endothelial nitric oxide synthase (eNOS) uncoupling is a mechanism that leads to endothelial dysfunction. Previously, we reported that shear stress-induced release of nitric oxide in vessels of aged rats was significantly reduced and was accompanied by increased production of superoxide (18, 27). In the present study, we investigated the influence of aging on eNOS uncoupling. Mesenteric arteries were isolated from young (3 mo) and aged (24 mo) C57 BL/6J mice. The expression of eNOS protein in young vs. aged mice was not significantly different. However, the aged mice had remarkable increases in the ratio of eNOS monomers to dimers and N(omega)-nitro-l-arginine methyl ester-inhibitable superoxide formation. The level of nitrotyrosine in the total protein and precipitated eNOS of aged vessels was increased compared with that in young vessels. HPLC analysis indicated a reduced level of tetrahydrobiopterin (BH4), an essential cofactor for eNOS, in the mesenteric arteries of aged mice. Quantitative PCR results implied that the diminished BH4 may result from the decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, enzymes involved in BH4 biosynthesis. When isolated and cannulated second-order mesenteric arteries (approximately 150 microm) from aged mice were treated with sepiapterin, acetylcholine-induced, endothelium-dependent vasodilation improved significantly, which was accompanied by stabilization of the eNOS dimer. These data suggest that eNOS uncoupling and increased nitrosylation of eNOS, decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, and subsequent reduced BH4 bioavailability may be important contributors of endothelial dysfunction in aged vessels.


Assuntos
Envelhecimento/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Acetilcolina/farmacologia , Fatores Etários , Oxirredutases do Álcool/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Biopterinas/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , GTP Cicloidrolase/metabolismo , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Multimerização Proteica , Pterinas/metabolismo , Pterinas/farmacologia , Superóxidos/metabolismo , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
19.
Mol Carcinog ; 45(1): 26-37, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16267831

RESUMO

The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF-kappaB distinctively, while modulating the pathways of JNK and AP-1 similarly. These differences may influence cellular processes such as proliferation, differentiation, and apoptosis.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Humanos , RNA Interferente Pequeno , Acetato de Tetradecanoilforbol/farmacologia , Proteína Supressora de Tumor p53/genética
20.
Cancer Res ; 65(18): 8538-47, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166335

RESUMO

We previously showed that dietary treatment with the N-acetylcysteine conjugate of phenethyl isothiocyanate (PEITC-NAC) inhibited benzo(a)pyrene-induced lung tumorigenesis in A/J mice, and that tumor inhibition was associated with induction of activator protein-1 (AP-1) activity and stimulation of apoptosis in the lungs of mice. In the present study, we show that PEITC-NAC also induces apoptosis and AP-1 activity in human lung adenocarcinoma A549 cells, and that activation of AP-1 is important in PEITC-NAC induced apoptosis in these cells. PEITC-NAC induced AP-1 binding activity in A549 cells in a dose- and time-dependent manner; peak activity appeared at 10 micromol/L after 24 hours. At that time, flow cytometric analysis showed a sub-G1 peak, indicating that approximately 4.5% of the cells had undergone apoptosis. When wild-type c-jun cDNA was transfected into A549 cells, PEITC-NAC-mediated apoptosis was greatly increased in the c-jun-transfected cells compared with the control vector-transfected cells, based on cell morphology and analysis of DNA fragmentation. Furthermore, cells that were pretreated with 100 nmol/L 12-O-tetradecanoyl phorbol-13-acetate, and then treated with 25 micromol/L PEITC-NAC, underwent enhanced apoptosis compared with cells that were treated with PEITC-NAC alone; cells treated with 12-O-tetradecanoyl phorbol-13-acetate alone showed active cell growth without apoptosis. Bivariate flow cytometric analysis of DNA strand breaks versus DNA content showed that apoptosis induced by PEITC-NAC occurred predominantly in the G2-M phase. These findings suggest that growth-stimulated cells with an elevated basal AP-1 activity, i.e., A549 cells transfected with wild-type c-jun or treated with a tumor promoter, were more sensitive to PEITC-NAC-mediated apoptosis. The observation that PEITC-NAC induces apoptosis predominantly in growth-promoted cells, such as neoplastic cells, suggests a selective mechanism by which PEITC-NAC inhibits lung carcinogenesis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Cisteína/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Tiocarbamatos/farmacologia , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Cisteína/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos A , Acetato de Tetradecanoilforbol , Fator de Transcrição AP-1/fisiologia , Transfecção , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...